Search results for "Compressible flow"

showing 10 items of 18 documents

Transition to turbulence in toroidal pipes

2011

AbstractIncompressible flow in toroidal pipes of circular cross-section was investigated by three-dimensional, time-dependent numerical simulations using a finite volume method. The computational domain included a whole torus and was discretized by up to ${\ensuremath{\sim} }11. 4\ensuremath{\times} 1{0}^{6} $ nodes. Two curvatures $\delta $ (radius of the cross-section/radius of the torus), namely 0.3 and 0.1, were examined; a streamwise forcing term was imposed, and its magnitude was made to vary so that the bulk Reynolds number ranged between ${\ensuremath{\sim} }3500$ and ${\ensuremath{\sim} }14\hspace{0.167em} 700$. The results were processed by different techniques in order to confirm…

PhysicsHopf bifurcationTurbulenceMechanical EngineeringReynolds numberTorusMechanicstransition to turbulence periodic flow quasi-periodic flow computational fluid dynamics curved pipe toroidal pipeCondensed Matter PhysicsSecondary flowVortexVortex ringsymbols.namesakeMechanics of MaterialsIncompressible flowsymbolsSettore ING-IND/19 - Impianti NucleariJournal of Fluid Mechanics
researchProduct

High-order simulation scheme for active particles driven by stress boundary conditions

2020

Abstract We study the dynamics and interactions of elliptic active particles in a two dimensional solvent. The particles are self-propelled through prescribing a fluid stress at one half of the fluid-particle boundary. The fluid is treated explicitly solving the Stokes equation through a discontinuous Galerkin scheme, which allows to simulate strictly incompressible fluids. We present numerical results for a single particle and give an outlook on how to treat suspensions of interacting active particles.

Physicsbusiness.industryBoundary (topology)MechanicsComputational fluid dynamicsStokes flowCondensed Matter PhysicsActive matterPhysics::Fluid DynamicsDiscontinuous Galerkin methodIncompressible flowParticleGeneral Materials ScienceBoundary value problembusinessJournal of Physics: Condensed Matter
researchProduct

Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2D bubble experiments

2013

Accepted by the Journal of Computational Physics Adaptive mesh refinement generally aims to increase computational efficiency without compromising the accuracy of the numerical solution. However it is an open question in which regions the spatial resolution can actually be coarsened without affecting the accuracy of the result. This question is investigated for a specific example of dry atmospheric convection, namely the simulation of warm air bubbles. For this purpose a novel numerical model is developed that is tailored towards this specific application. The compressible Euler equations are solved with a Discontinuous Galerkin method. Time integration is done with an IMEXmethod and the dy…

Numerical AnalysisMathematical optimizationPhysics and Astronomy (miscellaneous)Mathematical modelAdaptive mesh refinementApplied MathematicsNumerical analysisAdaptive Mesh RefinementCompressible flowComputer Science ApplicationsEuler equationsDry Warm Air BubbleComputational Mathematicssymbols.namesakeMeteorologyIMEXDiscontinuous Galerkin methodModeling and SimulationDiscontinuous GalerkinsymbolsApplied mathematicsGalerkin methodNavier–Stokes equationsMathematicsJournal of Computational Physics
researchProduct

Equilibrium real gas computations using Marquina's scheme

2003

Marquina's approximate Riemann solver for the compressible Euler equations for gas dynamics is generalized to an arbitrary equilibrium equation of state. Applications of this solver to some test problems in one and two space dimensions show the desired accuracy and robustness

Real gasApplied MathematicsMechanical EngineeringMathematical analysisMathematicsofComputing_NUMERICALANALYSISComputational MechanicsSolverSpace (mathematics)Compressible flowRiemann solverComputer Science ApplicationsEuler equationsRunge–Kutta methodssymbols.namesakeMechanics of MaterialsComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONCompressibilitysymbolsMathematicsInternational Journal for Numerical Methods in Fluids
researchProduct

A multi-domain approach for smoothed particle hydrodynamics simulations of highly complex flows

2018

Abstract An efficient and accurate method is proposed to solve the incompressible flow momentum and continuity equations in computational domains partitioned into subdomains in the framework of the smoothed particle hydrodynamics method. The procedure does not require any overlap of the subdomains, which would result in the increase of the computational effort. Perfectly matching solutions are obtained at the surfaces separating neighboring blocks. The block interfaces can be both planar and curved surfaces allowing to easily decompose even geometrically complex domains. The smoothing length of the kernel function is maintained constant in each subdomain, while changing between blocks where…

Computer scienceComputational MechanicsGeneral Physics and AstronomyBoundary condition010103 numerical & computational mathematics01 natural sciencesSettore ICAR/01 - IdraulicaMomentumSmoothed-particle hydrodynamicsPhysics and Astronomy (all)Smoothed particle hydrodynamicIncompressible flowComputational mechanicsMechanics of MaterialDomain decomposition0101 mathematicsMirror particleComputational MechanicConservation of massISPHBlock (data storage)Mechanical EngineeringComputer Science Applications1707 Computer Vision and Pattern RecognitionDomain decomposition methodsComputer Science Applications010101 applied mathematicsMechanics of MaterialsMulti-blockAlgorithmSmoothingComputer Methods in Applied Mechanics and Engineering
researchProduct

Localized forms of the LBB condition and a posteriori estimates for incompressible media problems

2018

Abstract The inf–sup (or LBB) condition plays a crucial role in analysis of viscous flow problems and other problems related to incompressible media. In this paper, we deduce localized forms of this condition that contain a collection of local constants associated with subdomains instead of one global constant for the whole domain. Localized forms of the LBB inequality imply estimates of the distance to the set of divergence free fields. We use them and deduce fully computable bounds of the distance between approximate and exact solutions of boundary value problems arising in the theory of viscous incompressible fluids. The estimates are valid for approximations, which satisfy the incompres…

General Computer ScienceMathematics::Analysis of PDEs01 natural sciencesMeasure (mathematics)Domain (mathematical analysis)Theoretical Computer SciencePhysics::Fluid DynamicsIncompressible flowBoundary value problem0101 mathematicsDivergence (statistics)Mathematicsta113LBB conditiona posteriori error estimatesNumerical AnalysisApplied Mathematics010102 general mathematicsMathematical analysista111010101 applied mathematicsincompressible viscous fluidsModeling and SimulationCompressibilityA priori and a posterioriConstant (mathematics)Mathematics and Computers in Simulation
researchProduct

A flux-split algorithm applied to conservative models for multicomponent compressible flows

2003

In this paper we consider a conservative extension of the Euler equations for gas dynamics to describe a two-component compressible flow in Cartesian coordinates. It is well known that classical shock-capturing schemes applied to conservative models are oscillatory near the interface between the two gases. Several authors have addressed this problem proposing either a primitive consistent algorithm [J. Comput. Phys. 112 (1994) 31] or Lagrangian ingredients (Ghost Fluid Method by Fedkiw et al. [J. Comput. Phys. 152 (1999) 452] and [J. Comput. Phys. 169 (2001) 594]). We solve directly this conservative model by a flux-split algorithm, due to the first author (see [J. Comput. Phys. 125 (1996) …

Shock wavePhysicsNumerical AnalysisPhysics and Astronomy (miscellaneous)Computer simulationRichtmyer–Meshkov instabilityApplied MathematicsCompressible flowComputer Science Applicationslaw.inventionEuler equationsComputational Mathematicssymbols.namesakeMach numberlawModeling and SimulationCompressibilitysymbolsCartesian coordinate systemAlgorithmJournal of Computational Physics
researchProduct

Seismically induced, non-stationary hydrodynamic pressure in a dam-reservoir system

2003

Stochastic seismic analysis of hydrodynamic pressure in a dam-reservoir system is presented in this paper. The analysis is conducted assuming infinite reservoir compressible fluid and modeling seismic acceleration as a normal zero-mean stochastic process obtained by Penzien filter. The non-homogeneous boundary conditions associated to the problem have been incorporated into the equation of pressure wave scattering in the form of a forcing function turning the non-homogeneous boundary value problem into an homogeneous one. Solution obtained via modal analysis in time-domain is coupled with the use of classical Ito stochastic differential calculus to characterize the stochastic hydrodynamic p…

Field (physics)Stochastic processModal analysisMechanical EngineeringAerospace EngineeringOcean EngineeringStatistical and Nonlinear PhysicsMechanicsCondensed Matter PhysicsCompressible flowPhysics::GeophysicsSeismic analysisAccelerationFilter (large eddy simulation)Nuclear Energy and EngineeringGeotechnical engineeringBoundary value problemGeologyCivil and Structural EngineeringProbabilistic Engineering Mechanics
researchProduct

A High-Resolution Penalization Method for large Mach number Flows in the presence of Obstacles

2009

International audience; A penalization method is applied to model the interaction of large Mach number compressible flows with obstacles. A supplementary term is added to the compressible Navier-Stokes system, seeking to simulate the effect of the Brinkman-penalization technique used in incompressible flow simulations including obstacles. We present a computational study comparing numerical results obtained with this method to theoretical results and to simulations with Fluent software. Our work indicates that this technique can be very promising in applications to complex flows.

General Computer ScienceComputational fluid dynamics01 natural sciencesCompressible flow010305 fluids & plasmas[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]Physics::Fluid DynamicsShock Waves.symbols.namesakeIncompressible flow0103 physical sciencesPenalty methodComplex geometries[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]0101 mathematicsBrinkman PenalizationChoked flowMathematicsbusiness.industry[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environmentGeneral EngineeringMechanics[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation010101 applied mathematicsClassical mechanicsCompressible Navier-Stokes EquationsMach numberShock WavesMesh generationCompressibilitysymbolsbusiness[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct

A numerical study of postshock oscillations in slowly moving shock waves

2003

Abstract Godunov-type methods and other shock capturing schemes can display pathological behavior in certain flow situations. This paper discusses the numerical anomaly associated to slowly moving shocks. We present a series of numerical experiments that illustrate the formation and propagation of this pathology, and allows us to establish some conclusions and question some previous conjectures for the source of the numerical noise. A simple diagnosis on an explicit Steger-Warming scheme shows that some intermediate states in the first time steps deviate from the true direction and contaminate the flow structure. A remedy is presented in the form of a new flux split method with an entropy i…

PhysicsShock capturing schemesSlowly moving shocksMechanicsMoving shockFlux split methodsComputational MathematicsNonlinear systems of conservation lawsNumerical noiseComputational Theory and MathematicsModeling and SimulationModelling and SimulationCompressible flowsEntropy (energy dispersal)Computers & Mathematics with Applications
researchProduct