Search results for "Compressible flow"
showing 10 items of 18 documents
Transition to turbulence in toroidal pipes
2011
AbstractIncompressible flow in toroidal pipes of circular cross-section was investigated by three-dimensional, time-dependent numerical simulations using a finite volume method. The computational domain included a whole torus and was discretized by up to ${\ensuremath{\sim} }11. 4\ensuremath{\times} 1{0}^{6} $ nodes. Two curvatures $\delta $ (radius of the cross-section/radius of the torus), namely 0.3 and 0.1, were examined; a streamwise forcing term was imposed, and its magnitude was made to vary so that the bulk Reynolds number ranged between ${\ensuremath{\sim} }3500$ and ${\ensuremath{\sim} }14\hspace{0.167em} 700$. The results were processed by different techniques in order to confirm…
High-order simulation scheme for active particles driven by stress boundary conditions
2020
Abstract We study the dynamics and interactions of elliptic active particles in a two dimensional solvent. The particles are self-propelled through prescribing a fluid stress at one half of the fluid-particle boundary. The fluid is treated explicitly solving the Stokes equation through a discontinuous Galerkin scheme, which allows to simulate strictly incompressible fluids. We present numerical results for a single particle and give an outlook on how to treat suspensions of interacting active particles.
Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2D bubble experiments
2013
Accepted by the Journal of Computational Physics Adaptive mesh refinement generally aims to increase computational efficiency without compromising the accuracy of the numerical solution. However it is an open question in which regions the spatial resolution can actually be coarsened without affecting the accuracy of the result. This question is investigated for a specific example of dry atmospheric convection, namely the simulation of warm air bubbles. For this purpose a novel numerical model is developed that is tailored towards this specific application. The compressible Euler equations are solved with a Discontinuous Galerkin method. Time integration is done with an IMEXmethod and the dy…
Equilibrium real gas computations using Marquina's scheme
2003
Marquina's approximate Riemann solver for the compressible Euler equations for gas dynamics is generalized to an arbitrary equilibrium equation of state. Applications of this solver to some test problems in one and two space dimensions show the desired accuracy and robustness
A multi-domain approach for smoothed particle hydrodynamics simulations of highly complex flows
2018
Abstract An efficient and accurate method is proposed to solve the incompressible flow momentum and continuity equations in computational domains partitioned into subdomains in the framework of the smoothed particle hydrodynamics method. The procedure does not require any overlap of the subdomains, which would result in the increase of the computational effort. Perfectly matching solutions are obtained at the surfaces separating neighboring blocks. The block interfaces can be both planar and curved surfaces allowing to easily decompose even geometrically complex domains. The smoothing length of the kernel function is maintained constant in each subdomain, while changing between blocks where…
Localized forms of the LBB condition and a posteriori estimates for incompressible media problems
2018
Abstract The inf–sup (or LBB) condition plays a crucial role in analysis of viscous flow problems and other problems related to incompressible media. In this paper, we deduce localized forms of this condition that contain a collection of local constants associated with subdomains instead of one global constant for the whole domain. Localized forms of the LBB inequality imply estimates of the distance to the set of divergence free fields. We use them and deduce fully computable bounds of the distance between approximate and exact solutions of boundary value problems arising in the theory of viscous incompressible fluids. The estimates are valid for approximations, which satisfy the incompres…
A flux-split algorithm applied to conservative models for multicomponent compressible flows
2003
In this paper we consider a conservative extension of the Euler equations for gas dynamics to describe a two-component compressible flow in Cartesian coordinates. It is well known that classical shock-capturing schemes applied to conservative models are oscillatory near the interface between the two gases. Several authors have addressed this problem proposing either a primitive consistent algorithm [J. Comput. Phys. 112 (1994) 31] or Lagrangian ingredients (Ghost Fluid Method by Fedkiw et al. [J. Comput. Phys. 152 (1999) 452] and [J. Comput. Phys. 169 (2001) 594]). We solve directly this conservative model by a flux-split algorithm, due to the first author (see [J. Comput. Phys. 125 (1996) …
Seismically induced, non-stationary hydrodynamic pressure in a dam-reservoir system
2003
Stochastic seismic analysis of hydrodynamic pressure in a dam-reservoir system is presented in this paper. The analysis is conducted assuming infinite reservoir compressible fluid and modeling seismic acceleration as a normal zero-mean stochastic process obtained by Penzien filter. The non-homogeneous boundary conditions associated to the problem have been incorporated into the equation of pressure wave scattering in the form of a forcing function turning the non-homogeneous boundary value problem into an homogeneous one. Solution obtained via modal analysis in time-domain is coupled with the use of classical Ito stochastic differential calculus to characterize the stochastic hydrodynamic p…
A High-Resolution Penalization Method for large Mach number Flows in the presence of Obstacles
2009
International audience; A penalization method is applied to model the interaction of large Mach number compressible flows with obstacles. A supplementary term is added to the compressible Navier-Stokes system, seeking to simulate the effect of the Brinkman-penalization technique used in incompressible flow simulations including obstacles. We present a computational study comparing numerical results obtained with this method to theoretical results and to simulations with Fluent software. Our work indicates that this technique can be very promising in applications to complex flows.
A numerical study of postshock oscillations in slowly moving shock waves
2003
Abstract Godunov-type methods and other shock capturing schemes can display pathological behavior in certain flow situations. This paper discusses the numerical anomaly associated to slowly moving shocks. We present a series of numerical experiments that illustrate the formation and propagation of this pathology, and allows us to establish some conclusions and question some previous conjectures for the source of the numerical noise. A simple diagnosis on an explicit Steger-Warming scheme shows that some intermediate states in the first time steps deviate from the true direction and contaminate the flow structure. A remedy is presented in the form of a new flux split method with an entropy i…